Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.433
Filtrar
1.
Cell Chem Biol ; 31(4): 743-759.e8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593807

RESUMO

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.


Assuntos
Antimaláricos , Malária , Metilaminas , Quinolinas , Humanos , Antimaláricos/química , Malária/tratamento farmacológico , Fenóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/metabolismo , Desenvolvimento de Medicamentos
2.
Pediatr Surg Int ; 40(1): 80, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493431

RESUMO

BACKGROUND AND AIM: Necrotizing Enterocolitis (NEC) is an inflammation-associated ischemic necrosis of the intestine. To investigate the effects of extra virgin olive oil (EVOO) on inflammation, oxidative stress, apoptosis, and histological changes in NEC-induced newborn rats. MATERIALS AND METHODS: 24 rats were randomly divided into three groups: control, NEC and NEC + EVOO. NEC induction was performed using hypoxia-hyperoxia, formula feeding, and cold stress. The NEC + EVOO group received 2 ml/kg EVOO with high phenolic content by gavage twice a day for 3 days. 3 cm of bowel including terminal ileum, cecum, and proximal colon was excised. RESULTS: Weight gain and clinical disease scores were significantly higher in the NEC + EVOO group than in the NEC group (p < 0.001). EVOO treatment caused significant decreases in IL1ß, IL6 levels (p = 0.016, p = 0.029 respectively) and EGF, MDA levels (p = 0.032, p = 0.013 respectively) compared to NEC group. Significant decreases were observed in IL6 gene expression in the NEC + EVOO group compared to the NEC group (p = 0.002). In the group NEC + EVOO, the number of Caspase-3 positive cells was found to be significantly reduced (p < 0.001) and histopathological examination revealed minimal changes and significantly lower histopathological scores (p < 0.001). CONCLUSION: Phenol-rich EVOO prevents intestinal damage caused by NEC by inhibiting inflammation, oxidative stress, apoptosis.


Assuntos
Enterocolite Necrosante , Interleucina-6 , Ratos , Animais , Azeite de Oliva/uso terapêutico , Azeite de Oliva/farmacologia , Interleucina-6/metabolismo , Enterocolite Necrosante/patologia , Estresse Oxidativo , Apoptose , Inflamação , Fenóis/farmacologia , Fenóis/uso terapêutico , Modelos Teóricos , Animais Recém-Nascidos
3.
Molecules ; 29(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398617

RESUMO

The biochemical characteristics of polyphenols contribute to their numerous advantageous impacts on human health. The existing research suggests that plant phenolics, whether consumed orally or applied directly to the skin, can be beneficial in alleviating symptoms and avoiding the development of many skin disorders. Phenolic compounds, which are both harmless and naturally present, exhibit significant potential in terms of counteracting the effects of skin damage, aging, diseases, wounds, and burns. Moreover, polyphenols play a preventive role and possess the ability to delay the progression of several skin disorders, ranging from small and discomforting to severe and potentially life-threatening ones. This article provides a concise overview of recent research on the potential therapeutic application of polyphenols for skin conditions. It specifically highlights studies that have investigated clinical trials and the use of polyphenol-based nanoformulations for the treatment of different skin ailments.


Assuntos
Polifenóis , Dermatopatias , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/química , Fenóis/farmacologia , Fenóis/uso terapêutico , Dermatopatias/tratamento farmacológico , Pele , Antioxidantes/química
4.
Phytother Res ; 38(4): 2041-2076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38391022

RESUMO

In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.


Assuntos
Curcumina , Ferroptose , Neoplasias , Estilbenos , Fenóis/farmacologia , Fenóis/uso terapêutico , Ferro , Neoplasias/tratamento farmacológico
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339193

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by several pathological hallmarks, including the deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, increased oxidative stress, and neuroinflammation. Current treatment options include monoclonal antibody drugs, acetylcholinesterase, and n-methyl-d-aspartate (NMDA) antagonists. Although those treatments provide some improvements in patients' quality of life, they fail to prevent or cure AD. Current research aims to identify novel targets and tools for AD prevention and modification. In this context, several studies showed the beneficial effect of the Mediterranean diet in the prevention and treatment of AD. One integral component of the Mediterranean diet is olive oil and extra-virgin olive oil (EVOO), which is high in phenolic compounds. EVOO and other olive-related phenolic compounds have been shown to reduce the risk of developing mild cognitive impairment (MCI) and AD. In this review, we discuss the mechanisms by which EVOO and phenolic compounds exert neuroprotective effects, including modulation of AD pathologies and promotion of cognitive health. Findings indicate that EVOO and its phenolic constituents influence key pathological processes of AD, such as Aß aggregation, tau phosphorylation, and neuroinflammation, while also enhancing BBB integrity and reducing oxidative stress. The human studies cited reveal a consistent trend where the consumption of olive oil is associated with cognitive benefits and a decreased risk of AD and related dementias. In conclusion, EVOO and its phenolic compounds hold promising potential for the prevention and treatment of AD, representing a significant shift towards more effective strategies against this complex neurodegenerative disorder.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Azeite de Oliva/uso terapêutico , Acetilcolinesterase , Doenças Neuroinflamatórias , Qualidade de Vida , Peptídeos beta-Amiloides , Fenóis/uso terapêutico
6.
Neurochem Res ; 49(2): 306-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940760

RESUMO

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Polifenóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Inflamação/tratamento farmacológico
7.
Mol Med ; 29(1): 167, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066431

RESUMO

BACKGROUND: The cGAS-STING signaling pathway is an essential section of the natural immune system. In recent years, an increasing number of studies have shown a strong link between abnormal activation of the cGAS-STING signaling pathway, a natural immune pathway mediated by the nucleic acid receptor cGAS, and the development and progression of autoimmune diseases. Therefore, it is important to identify an effective compound to specifically downregulate this pathway for disease. METHODS: The effect of Glabridin (Glab) was investigated in BMDMs and Peripheral blood mononuclear cell (PBMC) by establishing an in vitro model of cGAS-STING signaling pathway activation. An activation model stimulated by DMXAA was also established in mice to study the effect of Glab. On the other hand, we investigated the possible mechanism of action of Glab and the effect of Glab on Trex1-deficient mice. RESULTS: In this research, we report that Glab, a major component of licorice, specifically inhibits the cGAS-STING signaling pathway by inhibiting the level of type I interferon and inflammatory cytokines (IL-6 and TNF-α). In addition, Glab has a therapeutic effect on innate immune diseases caused by abnormal cytoplasmic DNA in Trex1-deficient mice. Mechanistically, Glab can specifically inhibit the interaction of STING with IRF3. CONCLUSION: Glab is a specific inhibitor of the cGAS-STING signaling pathway and may be used in the clinical therapy of cGAS-STING pathway-mediated autoimmune diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Isoflavonas , Fenóis , Animais , Camundongos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Leucócitos Mononucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Isoflavonas/uso terapêutico , Fenóis/uso terapêutico
8.
Ann Ital Chir ; 94: 643-648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131372

RESUMO

AIM: This study aimed to observe the clinical outcomes of phenol treatment in patients with recurrent pilonidal sinus disease. MATERIAL AND METHODS: This study retrospectively collected data from 107 patients with recurrent the pilonidal disease who received phenol treatment in a single institute. Patients were divided into two groups as successful treatment (ST) and unsuccessful treatment (UST) after phenol application. A comparison was held between groups to define factors associated with failure treatment. RESULTS: There were 89 patients in ST and 18 patients in UST group. The treatment success rate after phenol treatment was 83.2%. We observed no difference between ST and UST in terms of age, gender, family history, surgical technique at the first operation, time to recurrence, procedure time, follow-up time, time to return to work, walk without pain or sit on the toilet without pain (p>0.05). However, smoking rate, presence of comorbidity, and mean BMI were statistically significantly higher in the UST group compared to the ST group (p<0.05). In addition, being obese (OR: 2.45, 95% CI: 1.07 - 5.60), having a comorbid disease (OR: 3.11, 95% CI: 1.29 - 7.47), and smoking (OR: 1.97, 95% CI: 0.85 - 4.53) were significantly associated with treatment failure. CONCLUSION: Phenol treatment is an effective and simple procedure that could be easily applied even in rural hospitals in an outpatient fashion. Therefore, it should be considered for patients suffering from recurrence without the need for an aggressive surgical excision. KEY WORDS: Crystallized phenol, Pilonidal sinus, Recurrence.


Assuntos
Fenol , Seio Pilonidal , Humanos , Fenol/uso terapêutico , Estudos Retrospectivos , Seio Pilonidal/cirurgia , Seio Pilonidal/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Fenóis/uso terapêutico , Resultado do Tratamento , Dor/tratamento farmacológico , Recidiva
9.
Int Immunopharmacol ; 125(Pt A): 111124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977740

RESUMO

Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.


Assuntos
Sepse , Transdução de Sinais , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Fenol/metabolismo , Fenol/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Fígado/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo
10.
Medicina (Kaunas) ; 59(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893518

RESUMO

Background and Objectives: This study aimed to examine the efficacy of tapentadol immediate release (IR) and morphine hydrochloride in the treatment of acute postoperative pain after total abdominal hysterectomy, as well as to examine the frequency of opioid-related side effects in observed patients. Materials and Methods: The prospective observational study was conducted over five months, and it included a total number of 100 patients. The two cohorts had different types of postoperative analgesia, and the effects were observed for 24 h postoperatively, by following the pain scores on NRS (Numerical Pain Scale), contentment with analgesia, and opioid-related side effects. Results: Statistical significance was found when assessing pain 24 h after surgery while coughing, where patients in the tapentadol IR group had significantly higher mean pain scores (p < 0.01). The subjective feeling of satisfaction with postoperative analgesia was statistically significant in the tapentadol IR group (p = 0.005). Vertigo appeared significantly more in patients from the morphine group (p = 0.03). Conclusions: Tapentadol IR (immediate release) and morphine hydrochloride are both effective analgesics used in the first 24 h after total transabdominal hysterectomy. Overall satisfaction of patients with analgesia was good. The frequency of side effects was higher in the morphine group, with statistical significance regarding the vertigo.


Assuntos
Analgesia , Analgésicos Opioides , Feminino , Humanos , Tapentadol/uso terapêutico , Analgésicos Opioides/uso terapêutico , Estudos Prospectivos , Fenóis/uso terapêutico , Fenóis/efeitos adversos , Morfina/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Histerectomia/efeitos adversos , Vertigem/induzido quimicamente , Vertigem/tratamento farmacológico
11.
Medicina (Kaunas) ; 59(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37893598

RESUMO

Background and Objectives: Citrullus colocynthis belongs to the Cucurbitaceae family and is a wild medicinal plant used in folk literature to treat various diseases. The purpose of the current study was to explore the antihypertensive and antioxidant potentials of Citrullus colocynthis (CC) polyphenol-rich fractions using a spontaneous hypertensive rat (SHR) model. Materials and Methods: The concentrated aqueous ethanol extract of CC fruit was successively fractioned using solvents of increasing polarity, i.e., hexane, chloroform, ethyl acetate and n-butanol. The obtained extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC) and total flavonol content (TOF). Moreover, the CC extracts were further evaluated for radical scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays and antioxidant activity using inhibition of linoleic acid peroxidation and determination of reducing potential protocols. The phytochemical components were characterized by HPLC-MWD-ESI-MS in positive ionization mode. Results: The results showed that ethyl acetate fraction (EAF) exhibited a higher content of phenolic compounds in term of TPC (289 mg/g), TFC (7.6 mg/g) and TOF (35.7 mg/g). EAF showed higher antioxidant and DPPH and ABTS scavenging activities with SC50 values of 6.2 and 79.5 µg/mL, respectively. LCMS analysis revealed that twenty polyphenol compounds were identified in the EAF, including phenolic acids and flavonoids, mainly myricetin and quercetin derivatives. The in vivo antihypertensive activity of EAF of CC on SHR revealed that it significantly decreased the mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressures (DBP) and pulse pressure (PP) as compared to normal and hypertensive control groups. Moreover, EAF of CC significantly reduced the oxidative stress in the animals in a dose-dependent manner by normalizing the levels of superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NOx) and total antioxidant capacity (TAC). Furthermore, the treatment groups, especially the 500 mg of EAF per kg body weight (EA-500) group, significantly (p ≤ 0.05) improved the electrocardiogram (ECG) pattern and pulse wave velocity (PWV). Conclusion: It was concluded that the EAF of CC is a rich source of polyphenols and showed the best antioxidant activity and antihypertensive potential in SHR.


Assuntos
Citrullus colocynthis , Hipertensão , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/análise , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Modelos Genéticos , Análise de Onda de Pulso , Fenóis/farmacologia , Fenóis/uso terapêutico , Fenóis/análise , Hipertensão/tratamento farmacológico
12.
Discov Med ; 35(178): 715-732, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811611

RESUMO

Diabetes mellitus and its complications represent an extremely concerning health problem across the world. The extraordinary worldwide increase of the disease incidence highlights a challenging need for the development of new, safe, effective, and affordable therapeutic approaches. This complex disease, characterized by high blood sugar levels, involves numerous pathogenic processes in its etiology. Even though the molecular mechanisms behind are not clear, it is broadly recognized that oxidative stress, the accumulation of advanced glycation end-products (AGEs) and inflammation are implicated in the development, the progression and the related complications of the disease. In this regard, phenolic compounds represent a valuable therapeutic perspective. Thus, this review is focused on the role of phenolic compounds in diabetes-related oxidative stress, AGEs production and inflammation. In particular, we summarized recent results of in vitro and in vivo studies concerning antioxidant and antiglycative properties of phenolic compounds and also the modulation of activity on inflammation and inflammation-related pathways relevant in diabetes, namely arachidonic acid, nuclear factor-κB, mitogen-activated protein kinases and phosphatidylinositol 3­kinase/protein kinase B signaling pathways, were described. Highlighting thus the anti-diabetic potential of phenolic compounds in the development of preventive or therapeutic strategies for the management of diabetes and its related complications.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Humanos , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/tratamento farmacológico , Estresse Oxidativo , Fenóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
13.
Molecules ; 28(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687080

RESUMO

Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.


Assuntos
Fenóis , Compostos Fitoquímicos , Neoplasias Cutâneas , Especiarias , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/prevenção & controle , Fenóis/isolamento & purificação , Fenóis/farmacologia , Fenóis/uso terapêutico , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Humanos
14.
J Tradit Chin Med ; 43(5): 934-943, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679981

RESUMO

OBJECTIVE: To study the efficacy and mechanism of three phenylethanoid glycosides (PhGs) (verbascoside, echinacoside, and crenatoside) on altitude-induced fatigue in rats. METHODS: Altitude-induced fatigue model rats were established in a large hypobaric chamber. Swimming time, energy storage substances, metabolic enzymes, and metabolites were used to evaluate the anti-fatigue activities and mechanism of three PhGs (verbascoside, echinacoside, and crenatoside) (150 mg/kg, intragastric administration) in the hypoxic environment. RESULTS: The three PhGs, especially verbascoside, could prolong the swimming time of rats, ameliorate the edema and inflammatory infiltration of liver and skeletal muscle, increase the level of energy storage substances, reduce the decomposition of proteins, and exhibit positive effects on the metabolism-related enzyme activity and metabolites. CONCLUSIONS: The PhGs, especially verbascoside, are very potential with anti-fatigue activity in hypoxia. The mechanism may be explained with regulation of energy metabolism and reduction of oxidative stress.


Assuntos
Altitude , Glicosídeos , Animais , Ratos , Glicosídeos/uso terapêutico , Hipóxia/tratamento farmacológico , Fenóis/uso terapêutico
15.
Neuropharmacology ; 240: 109728, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742716

RESUMO

Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1ß) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Hipocampo/metabolismo , Modelos Animais de Doenças
16.
Sci Rep ; 13(1): 14114, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644107

RESUMO

Salidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein-protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a "drug component-target gene-disease" network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.


Assuntos
Neoplasias do Endométrio , Farmacologia em Rede , Feminino , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Fenóis/farmacologia , Fenóis/uso terapêutico
17.
Nihon Yakurigaku Zasshi ; 158(4): 319-325, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37394553

RESUMO

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Specific remedies are needed for preventing Type 2 diabetes which causes significant changes in an array of plasma metabolites. By untargeted metabolome analysis, phenyl sulfate (PS) increased with the progression of diabetes. In experimental diabetes models, PS administration induces albuminuria and podocyte damage due to the mitochondrial dysfunction. By clinical diabetic kidney disease (DKD) cohort analysis, it was also confirmed that the PS levels significantly correlate with basal and predicted 2-year progression of albuminuria. Phenol is synthesized from dietary tyrosine by gut bacterial-specific tyrosine phenol-lyase (TPL), and absorbed phenol is metabolized into PS in the liver. Inhibition of TPL reduces not only the circulating PS level but also albuminuria in diabetic mice. TPL inhibitor did not significantly alter the major composition, showing the non-lethal inhibition of microbial-specific enzymes has a therapeutic advantage, with lower selective pressure for the development of drug resistance. Clinically, 362 patients in a multi-center clinical study in diabetic nephropathy cohort (U-CARE) were analyzed with full data. The basal plasma PS level significantly correlated with ACR, eGFR, age, duration, HbA1c and uric acid, but not with suPAR. Multiple regression analysis revealed that ACR was the only factor that significantly correlated with PS. By stratified logistic regression analysis, in the microalbuminuria group, PS was the only factor related to the amount of change in the 2-year ACR in all models. PS is not only an early diagnosis marker, but also a modifiable cause and therefore a target for the treatment of DKD. Reduction of microbiota-derived phenol by the inhibitor should represent another aspect for developing drugs of DKD prevention.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal Crônica , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Albuminúria/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Fenóis/uso terapêutico
18.
Medicina (Kaunas) ; 59(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512069

RESUMO

Recent studies have highlighted the necessity to thoroughly evaluate medicinal plants due to their therapeutic potential. The current study delves into the phytochemical profile, antioxidant capacity, and hepatoprotective effect of Andrographis paniculata. The investigation specifically targets its effectiveness in mitigating liver dysfunction induced by carbon tetrachloride (CCl4) in Wistar albino rats, aiming to uncover its promising role as a natural remedy for liver-related ailments. A. paniculata leaf extract was screened for phytoconstituents and antioxidant and hepatoprotective effects in Wistar albino rats against CCl4-induced liver dysfunction. Phytochemical analysis revealed the presence of flavonoids, alkaloids, and phenolic compounds in all extracts. The phenolic concentration ranged from 10.23 to 19.52 mg gallic acid per gram of the sample, while the highest flavonoid concentration was found in the ethanol fraction (8.27 mg rutin equivalents per gram). The antioxidant activity varied from 10.23 to 62.23. GC-MS analysis identified several phytochemicals including octadecanoic acid, stigmasterol, phenanthrenecarboxylic acid, and others. Effects of the ethanol extract of A. paniculata were evaluated in four groups of animals. Biochemical estimations of serum glutamine oxaloacetate transaminase, serum glutamine pyruvate transaminase, and serum bilirubin were significantly higher (p < 0.05) in the CCl4-treated group. Treatment with 300 mg/kg b.w. of the ethanol extract of A. paniculata significantly (p < 0.05) decreased these serum enzymes. Lipid peroxidation levels in carbon tetrachloride-treated animals showed a substantial (p < 0.05) rise when compared to untreated animals, while the lipid peroxidation levels were considerably (p < 0.05) reduced after treatment with ethanol extract at 300 mg/kg b.w. Liver biochemical catalase activities were significantly reduced in the carbon tetrachloride-treated animals. The results of this study conclusively demonstrate that A. paniculata extracts are a rich source of phytochemicals and possess significant antioxidant, free radical scavenging, and hepatoprotective properties.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Andrographis paniculata , Ratos Wistar , Tetracloreto de Carbono , Glutamina/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/uso terapêutico , Fenóis/análise , Transaminases/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
19.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513325

RESUMO

Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic ß-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Hiperlipidemias , Jasminum , Doenças Metabólicas , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/complicações , Aloxano , Caspase 3/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Hiperglicemia/complicações , Glucose/metabolismo , Doenças Metabólicas/complicações , Fenóis/farmacologia , Fenóis/uso terapêutico , Biomarcadores/metabolismo , Glicemia/metabolismo
20.
Eur Rev Med Pharmacol Sci ; 27(12): 5530-5541, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37401289

RESUMO

OBJECTIVE: Acromegaly is a fatal and chronic disease that is caused by the abnormal secretion of growth hormone (GH) by the pituitary adenoma or pituitary tumor, resulting in an increased circulated concentration of insulin-like growth factors 1 (IGF-1), where in most of the cases it is secreted by a pituitary tumor. Higher levels of GH cause an increase in IGF-1 in the liver leading to multiple conditions such as cardiovascular diseases, glucose imbalance, cancer, and sleep apnea. Medical treatments such as surgery and radiotherapy can be used as the first choice of patients; however, specified human growth hormone control should be an essential treatment strategy due to an incidence rate of 0.2-1.1 yearly. Therefore, the main focus of this study is to develop a novel drug for treating acromegaly by exploiting medicinal plants that have been screened using phenol as a pharmacophore model to identify target therapeutic medicinal plant phenols. MATERIALS AND METHODS: The screening identified thirty-four pharmacophore matches of medicinal plant phenols. These were selected as suitable ligands and were docked against the growth hormone receptor to calculate their binding affinity. The candidate with the highest screened score was fragment-optimized and subjected to absorption, distribution, metabolism, and excretion (ADME) analysis, in-depth toxicity predictions, interpretation of Lipinski's rule, and molecular dynamic simulations to check the behavior of the growth hormone with the fragment-optimized candidate. RESULTS: The highest docking energy was calculated as -6.5 K/mol for Bauhiniastatin-1. Enhancing the performance of Bauhiniastatin-1 against the growth hormone receptor with fragment optimization portrayed that human growth hormone inhibition can be executed in a more efficient and better way. Fragment-optimized Bauhiniastatin-1 (FOB) was predicted with high gastrointestinal absorption, a water solubility of -2.61 as soluble, and synthetic accessibility of 4.50, achieving Lipinski's rule of 5, with low organ toxicity prediction and interpreting a positive behavior against the targeted protein. The discovery of a de novo drug candidate was confirmed by the docking of fragment-optimized Bauhiniastatin-1 (FOB), which had an energy of -4,070 Kcal/mol. CONCLUSIONS: Although successful and completely harmless, present healthcare treatment does not always eradicate the disease in some individuals. Therefore, novel formulas or combinations of currently marketed medications and emergent phytochemicals will provide new possibilities for these instances.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Neoplasias Hipofisárias , Humanos , Acromegalia/tratamento farmacológico , Acromegalia/etiologia , Acromegalia/cirurgia , Fator de Crescimento Insulin-Like I/metabolismo , Farmacóforo , Fenóis/uso terapêutico , Receptores da Somatotropina/uso terapêutico , Hormônio do Crescimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...